Olfactory glia transplantation into cervical spinal cord contusion injuries.
نویسندگان
چکیده
OBJECT The results of olfactory ensheathing cell (OEC) transplantation have raised great expectations as a potential treatment for spinal cord injury (SCI). Its capacity to promote functional neural repair, however, remains unclear. The authors studied axonal growth and locomotor recovery after C-7 contusion injury and OEC transplantation in adult rats. METHODS Twenty-four male Wistar rats underwent a mild C-7 contusion injury that completely disrupted the dorsal corticospinal tract (DCST). In 14 rats OECs were transplanted into the lesion, and 10 were used as controls. At 3 months postcontusion, the kinematics of locomotion were assessed, and the CST was traced by injecting dextran tetramethylrhodamine bilaterally into the cerebral cortex. The animals were killed 2 weeks after tracer injection, and their spinal cords were studied immunohistochemically. Although the survival of transplanted cells varied, they were present in all cases. The authors observed neither OEC migration nor DCST axon regeneration in any of the cell transplant-treated rats. Corticospinal axons ended in retraction bulbs at the proximal edge of the lesion or, exceptionally, a few micrometers inside the transplant. The results of neurofilament immunohistochemical analysis provided evidence of neurites from systems other than the DCST growing into the transplant, but in some cases these neurites formed loops of pathological appearance. Contusion injury of C-7 caused chronic locomotor deficits that did not improve after OEC transplants. CONCLUSIONS The findings in this study indicate that OEC transplants alone are not sufficient for neural repair and functional recovery after SCI. In addition, OECs can induce abnormal axonal growth, making further studies necessary before considering their clinical use.
منابع مشابه
Transplantation strategies to promote repair of the injured spinal cord.
This review describes the results of the transplantation of Schwann cells and olfactory ensheathing glia in combination with other interventions. The complete transection injury model was used to test the combination of Schwann cell bridges with methylprednisolone, neurotrophins, or olfactory ensheathing glia. The contusion injury model was used to compare Schwann cell and olfactory ensheathing...
متن کاملEffect of olfactory ensheathing cells (OECs) transplantation on functional recovery in acute phase of spinal contused rats
Introduction: Spinal cord injuries (SCI) lead to permanent irreversible functional deficits. Poor prognosis of patients is the motivation of searching a treatment for the chronic injury. Planting stem cells provides us with a promising strategy. In the meanwhile, the use of olfactory ensheathing cells (OECs) has shown very good results. This study aims at evaluating the effe...
متن کاملOlfactory ensheathing cells from the nose: clinical application in human spinal cord injuries.
Olfactory mucosa, the sense organ of smell, is an adult tissue that is regenerated and repaired throughout life to maintain the integrity of the sense of smell. When the sensory neurons of the olfactory epithelium die they are replaced by proliferation of stem cells and their axons grow from the nose to brain assisted by olfactory ensheathing cells located in the lamina propria beneath the sens...
متن کاملHuman olfactory mesenchymal stromal cell transplants promote remyelination and earlier improvement in gait co‐ordination after spinal cord injury
Autologous cell transplantation is a promising strategy for repair of the injured spinal cord. Here we have studied the repair potential of mesenchymal stromal cells isolated from the human olfactory mucosa after transplantation into a rodent model of incomplete spinal cord injury. Investigation of peripheral type remyelination at the injury site using immunocytochemistry for P0, showed a more ...
متن کاملDecrease in Cavity Size and Oligodendrocyte Cell Death Using Neurosphere-Derived Oligodendrocyte-Like Cells in Spinal Cord Contusion Model
Background: Oligodendrocyte cell death is among the important features of spinal cord injury, which appears within 15 min and occurs intensely for 4 h after injury, in the rat spinal contusion model. Accordingly, the number of oligodendrocytes progressively reduced within 24 h after injury. Administration of oligodendrocyte-like cells (OLCs) into the lesion area is one of the approaches to coun...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurosurgery. Spine
دوره 3 4 شماره
صفحات -
تاریخ انتشار 2005